

Admiralty brass is composed of zinc, copper and tin. Copper provides the increased heat transfer which zinc provides the corrosion resistance. In applications such as condensers and heat exchangers cooled with fresh, salt, or brackish water, these tubes are very useful. You will find them in oil refineries, power plants, and other industrial applications.

Pump Barrels or Sucker Rod Pumps, used in oil drilling also use admiralty brass due its corrosion resistance. Even though the pumps typically last between 6 months and 1 year, admiralty brass is a preferred material for improved longevity over carbon steel and below the price of materials such as monel. experorum

CHEMICAL COMPOSITION

	Cu	Fe	Pb	As	Sn ⁽¹⁾	Zn
MIN/MAX	70.0-73.0	.06	.07	.0206	.8-1.2	Rem
NOMINAL	71.0	-	-	.04	1.0	28.0

 $^{^{(1)}}$ For tubular products, the minimum Sn content may be .9% Note: Cu + Sum of Named Elements, 99.6% min

Request Quote

APPLICABLE SPECIFICATIONS

Plate	Tube	Tube	Tube	Tube	Tube,
Condenser Tube		Condenser	Finned	U-Bend	Welded
ASME SB171	ASTM B135	ASME SB111	ASME SB359	ASME SB395	ASME SB543
ASTM B171		ASTM B111	ASTM B359	ASTM B395	ASTM B543

FABRICATION PROPERTIES

Soldering	Brazing	Oxyacetylene Welding	Gas Shielded Arc Welding	Coated Metal Arc Welding	Spot We	eld Seam Weld	Butt Weld	being Cold Worked	Capacity for being Hot- Formed	Machinabilty Rating
Excellent	Excelle	nt Good	Fair	Not Recommended	Good	Not Recommended	Good	Excellent	Fair	30

PHYSICAL PROPERTIES

Melting Point - Liquidus	Melting Point - Solidus	Density	Specific Gravity	Electrical Resistivity	Electrical Conductivity	Thermal Conductivity	Coefficient of Thermal Expansion	Specific Heat Capacity	Modulas of Elasticity in Tension	Modulus of Rigidity
1720 F	1650 F	0.308 lb/in ³ @ 68 F	8.53	41.5 ohms-cmil/ft @68 F	25 %IACS @ 68 F	64.0 Btu · ft/(hr ·ft2· ^O F)@ 68F	11.2 · 10 ⁻⁶ per ^O F (68-572 F)	0.09 Btu/lb/ ⁰ F @ 68 F	16000 ksi	6000 ksi
938 C	899 C	8.53 gm/cm ³	8.53	6.9 microhm-cm	0.146 MegaSiemens/cm	110.8 W/m · ^O K	20.2 ·10 ⁻⁶ per ^o C	377.1 J/kg · ^O K at	110000 MPa	41370 MPa

MAXIUM PRESSURE WORK

P = Maxium work pressure(psi)
S = Minimum tensile strength of material for a specific temper(it is the value of the tensile strength in psi in Mechanica properties table)
D = Exterior diameter of tube
T = Wall thickness of tube
P = ZT X S
S D

NON DESTRUCTIVE TESTS

Eddy Current Testing Hydrostatic Testing Air Underwater Testing Ultrasonic Testing (PMI) Positive Material Identification

DESTRUCTIVE TESTS

Microstructure Test Tensile Test Flattening Test Expansion Test Optical Test Ammonia Vapor Test Spectrometry Test